On the Geometry of Border Rank Algorithms for n × 2 by 2 × 2 Matrix Multiplication
نویسندگان
چکیده
We make an in-depth study of the known border rank (i.e. approximate) algorithms for the matrix multiplication tensor M⟨n,2,2⟩ ∈ C⊗C⊗C encoding the multiplication of an n × 2 matrix by a 2 × 2 matrix.
منابع مشابه
New lower bounds for the border rank of matrix multiplication
The border rank of the matrix multiplication operator for n× n matrices is a standard measure of its complexity. Using techniques from algebraic geometry and representation theory, we show the border rank is at least 2n2−n. Our bounds are better than the previous lower bound (due to Lickteig in 1985) of 2 n 2 + 2 −1 for all n≥ 3. The bounds are obtained by finding new equations that bilinear ma...
متن کاملOn the geometry of border rank algorithms for matrix multiplication and other tensors with symmetry
We establish basic information about border rank algorithms for the matrix multiplication tensor and other tensors with symmetry. We prove that border rank algorithms for tensors with symmetry (such as matrix multiplication and the determinant polynomial) come in families that include representatives with normal forms. These normal forms will be useful both to develop new efficient algorithms a...
متن کاملA $2n^2-log(n)-1$ lower bound for the border rank of matrix multiplication
Let M ⟨n⟩ ∈ C n 2 ⊗C n 2 ⊗C n 2 denote the matrix multiplication tensor for n × n matrices. We use the border substitution method [2, 3, 6] combined with Koszul flattenings [8] to prove the border rank lower bound R(M ⟨n,n,w⟩) ≥ 2n 2 − ⌈log 2 (n)⌉ − 1.
متن کاملThe Border Rank of the Multiplication of 2× 2 Matrices Is Seven
One of the leading problems of algebraic complexity theory is matrix multiplication. The näıve multiplication of two n× n matrices uses n multiplications. In 1969 Strassen [19] presented an explicit algorithm for multiplying 2 × 2 matrices using seven multiplications. In the opposite direction, Hopcroft and Kerr [11] and Winograd [20] proved independently that there is no algorithm for multiply...
متن کاملExplicit tensors of border rank at least 2n-1
For odd m, I write down tensors in C m ⊗C m ⊗C m of border rank at least 2m − 1, showing the non-triviality of the Young-flattening equations of [6] that vanish on the matrix multiplication tensor. I also study the border rank of the tensors of [1] and [3]. I show the tensors T 2 k ∈ C k ⊗C 2 k ⊗C 2 k , of [1], despite having rank equal to 2 k+1 − 1, have border rank equal to 2 k. I show the eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 26 شماره
صفحات -
تاریخ انتشار 2017